0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWhile neural adaptive control is widely used for dealing with continuous- or discrete-time dynamical systems, less is known about its mechanism and performance in hybrid dynamical systems. This article develops analytical tools to investigate the neural adaptive tracking control of the hybrid Markovian switching networks with heterogeneous nonlinear dynamics and randomly switched topologies. A gradient-descent adaptation law built on neural networks (NNs) is presented for efficient distributed adaptive control. It is shown that the proposed control scheme can guarantee a stable closed-loop error system for any positive control gain and tuning gain. The tracking error is demonstrated to be practically uniformly exponentially stable with a threshold in the mean-square sense. This study further reveals how the topological structure affects the NN function, by measuring the influence of the switched topologies on the learning performance.
Bin Hu, Xinghuo Yu, Zhi‐Hong Guan, Jürgen Kurths, Guanrong Chen (2020). Hybrid Neural Adaptive Control for Practical Tracking of Markovian Switching Networks. IEEE Transactions on Neural Networks and Learning Systems, 32(5), pp. 2157-2168, DOI: 10.1109/tnnls.2020.3001009.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Neural Networks and Learning Systems
DOI
10.1109/tnnls.2020.3001009
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access