0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe report periodic density functional theory (DFT) calculations for ${\mathrm{CeO}}_{2}$ and ${\mathrm{Ce}}_{2}{\mathrm{O}}_{3}$ using the Perdew-Burke-Ernzerhof (PBE0) and Heyd-Scuseria-Ernzerhof (HSE) hybrid functionals that include nonlocal Fock exchange. We study structural, electronic, and magnetic ground state properties. Hybrid functionals correctly predict ${\mathrm{Ce}}_{2}{\mathrm{O}}_{3}$ to be an insulator as opposed to the ferromagnetic metal predicted by the local spin density (LDA) and generalized gradient (GGA) approximations. The equilibrium volumes of both structures are in very good agreement with experiments, improving upon the description of the LDA and GGA. The calculated ${\mathrm{CeO}}_{2}$ (O $2p$--Ce $5d$) and ${\mathrm{Ce}}_{2}{\mathrm{O}}_{3}$ $(\mathrm{Ce}\phantom{\rule{0.3em}{0ex}}4f\text{\ensuremath{-}}5d4f)$ band gaps are larger by up to 45% (PBE0) and 15% (HSE) than found in experiments. Furthermore, we calculate atomization energies, heats of formation, and the reduction energy of $2{\mathrm{CeO}}_{2}\ensuremath{\rightarrow}{\mathrm{Ce}}_{2}{\mathrm{O}}_{3}+(1∕2){\mathrm{O}}_{2}$. The latter is underestimated by $\ensuremath{\sim}0.4--0.9\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$ with respect to available experimental data at room temperature. We compare our results with the more traditional DFT+$U$ (LDA$+U$ and PBE$+U$) approach and discuss the role played by the Hubbard $U$ parameter.
Juarez L. F. Da Silva, M. V. Ganduglia-Pirovano, Joachim Sauer, Veronika Bayer, Kresse Georg (2007). Hybrid functionals applied to rare-earth oxides: The example of ceria. Physical Review B, 75(4), DOI: 10.1103/physrevb.75.045121.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2007
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Physical Review B
DOI
10.1103/physrevb.75.045121
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access