RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Human Machine Interface with Wearable Electronics Using Biodegradable Triboelectric Films for Calligraphy Practice and Correction

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2022

Human Machine Interface with Wearable Electronics Using Biodegradable Triboelectric Films for Calligraphy Practice and Correction

0 Datasets

0 Files

en
2022
Vol 14 (1)
Vol. 14
DOI: 10.1007/s40820-022-00965-8

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Shen Shen
Jia Yi
Zhongda Sun
+7 more

Abstract

Letter handwriting, especially stroke correction, is of great importance for recording languages and expressing and exchanging ideas for individual behavior and the public. In this study, a biodegradable and conductive carboxymethyl chitosan-silk fibroin (CSF) film is prepared to design wearable triboelectric nanogenerator (denoted as CSF-TENG), which outputs of Voc ≈ 165 V, Isc ≈ 1.4 μA, and Qsc ≈ 72 mW cm-2. Further, in vitro biodegradation of CSF film is performed through trypsin and lysozyme. The results show that trypsin and lysozyme have stable and favorable biodegradation properties, removing 63.1% of CSF film after degrading for 11 days. Further, the CSF-TENG-based human-machine interface (HMI) is designed to promptly track writing steps and access the accuracy of letters, resulting in a straightforward communication media of human and machine. The CSF-TENG-based HMI can automatically recognize and correct three representative letters (F, H, and K), which is benefited by HMI system for data processing and analysis. The CSF-TENG-based HMI can make decisions for the next stroke, highlighting the stroke in advance by replacing it with red, which can be a candidate for calligraphy practice and correction. Finally, various demonstrations are done in real-time to achieve virtual and real-world controls including writing, vehicle movements, and healthcare.

How to cite this publication

Shen Shen, Jia Yi, Zhongda Sun, Zihao Guo, Tianyiyi He, Liyun Ma, Huimin Li, Jiajia Fu, Chengkuo Lee, Zhong Lin Wang (2022). Human Machine Interface with Wearable Electronics Using Biodegradable Triboelectric Films for Calligraphy Practice and Correction. , 14(1), DOI: https://doi.org/10.1007/s40820-022-00965-8.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

10

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1007/s40820-022-00965-8

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access