0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSome of the most species-rich plant communities occur on ancient, strongly weathered soils, whereas those on recently developed soils tend to be less diverse. Mechanisms underlying this well-known pattern, however, remain unresolved. Here, we present a conceptual model describing alternative mechanisms by which pedogenesis (the process of soil formation) might drive plant diversity. We suggest that long-term soil chronosequences offer great, yet largely untapped, potential as ‘natural experiments’ to determine edaphic controls over plant diversity. Finally, we discuss how our conceptual model can be evaluated quantitatively using structural equation modeling to advance multivariate theories about the determinants of local plant diversity. This should help us to understand broader-scale diversity patterns, such as the latitudinal gradient of plant diversity.
Étienne Laliberté, James B. Grace, Michael A. Huston, Hans Lambers, François P. Teste, Benjamin L. Turner, David A. Wardle (2013). How does pedogenesis drive plant diversity?. Trends in Ecology & Evolution, 28(6), pp. 331-340, DOI: 10.1016/j.tree.2013.02.008.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Trends in Ecology & Evolution
DOI
10.1016/j.tree.2013.02.008
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access