0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessOnline techniques for monitoring biofilm formation and evolution are limited, especially as regards its application in flowing water systems. This is chiefly due to the absence of efficient non-destructive and non-invasive sensing methods. In this study, a sensitive electrical resistance spectroscopy technique is developed to monitor non-invasively and in real time the growth of biofilms over metallic surfaces inside water flow systems. To this aim, Pseudomonas fluorescens strain is used for biofilm development lasting 72 hours in a laboratory-scale test channel of orthogonal cross section. Biofilm development corresponds to a progressively increasing coverage of the metallic surface area up to full coverage and a progressively increasing thickness. Biofilm development is registered by continuous recording of electrical impedance signals (time series). Proper configuration and tuning of the electronics promote the resistive contribution to the signal whereas careful grounding diminishes electrical interferences and yields superb sensing sensitivity. An increase of relative electrical resistance of around 15% is noticed in 72 hours flow experiments which is attributed to both an increase of metallic surface area coverage and an increase of biofilm thickness. An independent estimation of these quantities using imaging tools and microscopy analysis, indicates that full coverage of the metallic surface occurs after only 48 hours of the flow experiment, whereas biofilm thickness increases gradually along the entire 72 hours of the experiment. Cross-examination of electrical signals with biofilm characteristics (metallic surface coverage and biofilm thickness) reveals that, qualitatively speaking, electrical signals are rather more sensitive to metallic surface coverage than biofilm thickness.
Zoi Christina Kampouraki, Maria Petala, Konstantinos Zacharias, Avraam A. Konstantinidis, Margaritis Kostoglou, Thodoris D. Karapantsios (2023). Highly Sensitive Resistance Spectroscopy Technique for Online Monitoring of Biofilm Growth on Metallic Surfaces. , DOI: https://doi.org/10.2139/ssrn.4537472.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.2139/ssrn.4537472
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access