0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCurrent spectrum-sharing frameworks struggle with adaptability, often being either static or insufficiently dynamic. They primarily emphasize temporal sharing while overlooking spatial and spectral dimensions. We propose an adaptive, AI-driven spectrum-sharing framework within the O-RAN architecture, integrating discriminative and generative AI (GenAI) to forecast spectrum needs across multiple timescales and spatial granularities. A marketplace model, managed by an authorized spectrum broker, enables operators to trade spectrum dynamically, balancing static assignments with real-time trading. GenAI enhances traffic prediction, spectrum estimation, and allocation, optimizing utilization while reducing costs. This modular, flexible approach fosters operator collaboration, maximizing efficiency and revenue. A key research challenge is refining allocation granularity and spatio-temporal dynamics beyond existing models.
Mehdi Rasti, Elaheh Ataeebojd, Shiva Kazemi Taskou, Mehdi Monemi, Siavash Razmi, Matti Latva-aho (2025). Highly Dynamic and Flexible Spatio-Temporal Spectrum Management with AI-Driven O-RAN: A Multi-Granularity Marketplace Framework. arXiv (Cornell University), DOI: 10.48550/arxiv.2502.13891.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2025
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
arXiv (Cornell University)
DOI
10.48550/arxiv.2502.13891
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access