0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessVariational ab initio methods in quantum chemistry stand out among other methods in providing direct access to the wave function. This allows, in principle, straightforward extraction of any other observable of interest, besides the energy, but, in practice, this extraction is often technically difficult and computationally impractical. Here, we consider the electron density as a central observable in quantum chemistry and introduce a novel method to obtain accurate densities from real-space many-electron wave functions by representing the density with a neural network that captures known asymptotic properties and is trained from the wave function by score matching and noise-contrastive estimation. We use variational quantum Monte Carlo with deep-learning Ansätze to obtain highly accurate wave functions free of basis set errors and from them, using our novel method, correspondingly accurate electron densities, which we demonstrate by calculating dipole moments, nuclear forces, contact densities, and other density-based properties.
Lixue Cheng, P. Bernát Szabó, Zeno Schätzle, Derk P. Kooi, Jonas Köhler, Klaas J. H. Giesbertz, Frank Noé, Jan Hermann, Paola Gori‐Giorgi, Adam Foster (2025). Highly accurate real-space electron densities with neural networks. , 162(3), DOI: https://doi.org/10.1063/5.0236919.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1063/5.0236919
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access