0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSilk fabric reinforced epoxy composites (SFRPs) were prepared by simple hot-press and vacuum treatment, to achieve a maximum reinforcement fraction of 70vol.%-silk. Mechanical behaviour, specifically tensile, flexural, interlaminar shear, impact, dynamic and thermal properties of the SFRPs, was investigated. It was shown that reinforcement by silk fabric can greatly enhance the mechanical performance of SFRPs. In particular, the tensile modulus and breaking energy of 70vol.%-silk SFRP were 145% and 467% higher than the pristine epoxy resin. Moreover, the flexural modulus, ultimate strength and breaking energy were also markedly increased for SFRPs. The flexural strength increased linearly with increasing silk volume fraction from 30 to 60vol.% but diminished slightly at 70vol.%. Additionally, interlaminar shear results showed that the silk and the matrix epoxy resin had better adhesion properties than plain woven flax fibre. Of most significance is that the impact strength reached a maximum of ~71kJ m−2 for the 60vol.%-silk SFRP, which demonstrates the potential of silk reinforcements in impact-resistant composites for applications such as wind turbine blades. Our study may shed light on improving the strength and toughness of engineering composites by incorporating high volume fractions of natural fibres.
Kang Yang, Robert O. Ritchie, Yizhuo Gu, Sujun Wu, Juan Guan (2016). High volume-fraction silk fabric reinforcements can improve the key mechanical properties of epoxy resin composites. Materials & Design, 108, pp. 470-478, DOI: 10.1016/j.matdes.2016.06.128.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Materials & Design
DOI
10.1016/j.matdes.2016.06.128
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access