0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessShifts from coral to algal dominance are expected to increase in tropical coral reefs as a result of anthropogenic disturbances. The consequences for key ecosystem functions such as primary productivity, calcification, and nutrient recycling are poorly understood, particularly under changing environmental conditions. We used a novel in situ incubation approach to compare functions of coral- and algae-dominated communities in the central Red Sea bimonthly over an entire year. In situ gross and net community primary productivity, calcification, dissolved organic carbon fluxes, dissolved inorganic nitrogen fluxes, and their respective activation energies were quantified to describe the effects of seasonal changes. Overall, coral-dominated communities exhibited 30% lower net productivity and 10 times higher calcification than algae-dominated communities. Estimated activation energies indicated a higher thermal sensitivity of coral-dominated communities. In these communities, net productivity and calcification were negatively correlated with temperature (>40% and >65% reduction, respectively, with +5°C increase from winter to summer), whereas carbon losses via respiration and dissolved organic carbon release more than doubled at higher temperatures. In contrast, algae-dominated communities doubled net productivity in summer, while calcification and dissolved organic carbon fluxes were unaffected. These results suggest pronounced changes in community functioning associated with coral-algal phase shifts. Algae-dominated communities may outcompete coral-dominated communities because of their higher productivity and carbon retention to support fast biomass accumulation while compromising the formation of important reef framework structures. Higher temperatures likely amplify these functional differences, indicating a high vulnerability of ecosystem functions of coral-dominated communities to temperatures even below coral bleaching thresholds. Our results suggest that ocean warming may not only cause but also amplify coral-algal phase shifts in coral reefs.
Florian Roth, Nils Rädecker, Susana Carvalho, Carlos M. Duarte, Vincent Saderne, Andrea Antón, Luis Silva, María Ll. Calleja, Xosé Anxelu G. Morán, Christian R. Voolstra, Benjamin Kürten, Burton H. Jones, Christian Wild (2020). High summer temperatures amplify functional differences between coral‐ and algae‐dominated reef communities. , 102(2), DOI: https://doi.org/10.1002/ecy.3226.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
13
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/ecy.3226
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access