0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Humans generate intricate whole-body motions by planning, executing and combining individual limb movements. We investigated this fundamental aspect of motor control and approached the problem of autonomous task completion by hierarchical generative modelling with multi-level planning, emulating the deep temporal architecture of human motor control. We explored the temporal depth of nested timescales, where successive levels of a forward or generative model unfold, for example, object delivery requires both global planning and local coordination of limb movements. This separation of temporal scales suggests the advantage of hierarchically organizing the global planning and local control of individual limbs. We validated our proposed formulation extensively through physics simulation. Using a hierarchical generative model, we showcase that an embodied artificial intelligence system, a humanoid robot, can autonomously complete a complex task requiring a holistic use of locomotion, manipulation and grasping: the robot adeptly retrieves and transports a box, opens and walks through a door, kicks a football and exhibits robust performance even in the presence of body damage and ground irregularities. Our findings demonstrated the efficacy and feasibility of human-inspired motor control for an embodied artificial intelligence robot, highlighting the viability of the formulized hierarchical architecture for achieving autonomous completion of challenging goal-directed tasks.
Kai Yuan, Noor Sajid, Karl Friston, Zhibin Li (2023). Hierarchical generative modelling for autonomous robots. , 5(12), DOI: https://doi.org/10.1038/s42256-023-00752-z.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1038/s42256-023-00752-z
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access