0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWave motion in the ocean can generate plentiful energy, but it is difficult to harvest wave energy for practical use because of the low frequency and random directional characteristics of wave motion. In this paper, a gyroscope-structured triboelectric nanogenerator (GS-TENG) is proposed for harvesting multidirectional ocean wave energy. Its inner and outer generation units can operate independently in different directions, and they all adopt the friction mode of surface contact. While realizing noninterference multidirectional energy harvesting, the power generation area is increased. In the experiments, under acceleration of 6 m/s2 with variations in excitation angle, the GS-TENG can output direct currents of 0.8-3.2 μA, and the open-circuit voltages of the inner and outer generation units can reach 730 and 160 V, respectively. When the devices are networked and placed in the water, the electrical energy generated by the GS-TENGs can enable commercial thermometers to operate normally. The attenuation of direct-current output by the GS-TENG in the experiment of 30 days in water is about 8%, which verifies the good durability of the device in the water environment. Therefore, the GS-TENG has excellent application prospects in the wave energy harvesting field.
Qi Gao, Yuhong Xu, Xin Yu, Zhaoxu Jing, Tinghai Cheng, Zhong Lin Wang (2022). Gyroscope-Structured Triboelectric Nanogenerator for Harvesting Multidirectional Ocean Wave Energy. , 16(4), DOI: https://doi.org/10.1021/acsnano.2c01594.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.2c01594
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access