0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe present a systematic study of the growth of hexagonal ZnO nanotube arrays using a solution chemical method by varying the growth temperature (<100 °C), time and solution concentration. A piezoelectric nanogenerator using the as-grown ZnO nanotube arrays has been demonstrated for the first time. The nanogenerator gives an output voltage up to 35 mV. The detailed profile of the observed electric output is understood based on the calculated piezoelectric potential in the nanotube with consideration of the Schottky contact formed between the metal tip and the nanotube; and the mechanism agrees with that proposed for nanowire based nanogenerator. Our study shows that ZnO nanotubes can also be used for harvesting mechanical energy.
Yi Xi, Jinhui Song, Sheng Xu, Rusen Yang, Zhiyuan Gao, Chenguo Hu, Zhong Lin Wang (2009). Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. , 19(48), DOI: https://doi.org/10.1039/b917525c.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2009
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1039/b917525c
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access