0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDissolved organic carbon (DOC) and nitrogen (DON) are central in many nutrient cycles within soil and they play an important role in many pedogenic processes. Plants provide a primary input of DOC and DON into soil via root turnover and exudation. Under controlled conditions we investigated the influence of 11 grass species alongside an unplanted control on the amount and nature of DOC and DON in soil. Our results showed that while the presence of plants significantly increases the size of a number of dissolved nutrient pools in comparison to the unplanted soil (e.g. DOC, total phenolics in solution) it has little affect on other pools (e.g. free amino acids). Grass species, however, had little effect on the composition of the DOC, DON or inorganic N pools. While the concentration of free amino acids was the same in the planted and unplanted soil, the flux through this pool was significantly faster in the presence of plants. The presence of plants also affected the biodegradability of the DOC pool. We conclude that while the presence of plants significantly affects the quantity and cycling of DOC and DON in soil, comparatively, individual grass species exerts less influence.
Muhammad Khalid, Nawaf Soleman, Davey L Jones (2006). Grassland plants affect dissolved organic carbon and nitrogen dynamics in soil. Soil Biology and Biochemistry, 39(1), pp. 378-381, DOI: 10.1016/j.soilbio.2006.07.007.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2006
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Soil Biology and Biochemistry
DOI
10.1016/j.soilbio.2006.07.007
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access