0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessGraphene is a name given to an atomic layer of carbon atoms densely packed into a benzene-ring structure with a nearest-neighbour distance of ~1.4Aring. This theoretical material is widely used in the description of the crystal structure and properties of graphite, large fullerenes and carbon nanotubes. As a first approximation, graphite is made of graphene layers relatively loosely stacked on top of each other with a fairly large interlayer distance of ~3.4Aring . Carbon nanotubes are usually thought of as graphene layers rolled into hollow cylinders. Graphene films are made by repeated peeling of small (mm-sized) mesas of highly-oriented pyrolytic graphite (HOPG). The exfoliation continues until flakes that are nearly invisible in an optical microscope are obtained. A simple spin valve structure has been fabricated from such films using electron beam lithography. This is based on a symmetrical electrode structure and relies on imperfections in the two ferromagnetic electrodes to give different switching fields for each electrode. Despite this highly non-optimised structure we observed a 10% change in resistance at 300 K as the applied field is swept between +450 G and -450 G. The 10% change in resistance is much larger than can be attributed to MR effects in the individual permalloy electrodes (2.5% maximum), giving confidence that it is due to the spin valve effect with the graphene acting as the non-magnetic conductor. Although spin valve effects have been observed in carbon nanotubes this is the first observation of this effect in planar graphene.
E.W. Hill, A. K. Geǐm, Konstantin ‘kostya’ Novoselov, Peter Blake, F. Schedin (2006). Graphene Based Spin Valve Devices. , pp. 385-385, DOI: 10.1109/intmag.2006.376109.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2006
Authors
5
Datasets
0
Total Files
0
Language
English
DOI
10.1109/intmag.2006.376109
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access