0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper provides an overview of the methodology of and describes preliminary results from an experiment called GPS/MET (Global Positioning System/Meteorology), in which temperature soundings are obtained from a low Earth-orbiting satellite using the radio occultation technique. Launched into a circular orbit of about 750-km altitude and 70° inclination on 3 April 1995, a small research satellite, MicroLab 1, carried a laptop-sized radio receiver. Each time this receiver rises and sets relative to the 24 operational GPS satellites, the GPS radio waves transect successive layers of the atmosphere and are bent (refracted) by the atmosphere before they reach the receiver, causing a delay in the dual-frequency carrier phase observations sensed by the receiver. During this occultation, GPS limb sounding measurements are obtained from which vertical profiles of atmospheric refractivity can be computed. The refractivity is a function of pressure, temperature, and water vapor and thus provides information on these variables that has the potential to be useful in weather prediction and weather and climate research. Because of the dependence of refractivity on both temperature and water vapor, it is generally impossible to compute both variables from a refractivity sounding. However, if either temperature or water vapor is known from independent measurements or from model predictions, the other variable may be calculated. In portions of the atmosphere where moisture effects are negligible (typically above 5–7 km), temperature may be estimated directly from refractivity. This paper compares a representative sample of 11 temperature profiles derived from GPS/MET soundings (assuming a dry atmosphere) with nearby radiosonde and high-resolution balloon soundings and the operational gridded analysis of the National Centers for Environmental Prediction (formerly the National Meteorological Center). One GPS/MET profile was obtained at a location where a temperature profile from the Halogen Occultation Experiment was available for comparison. These comparisons show that accurate vertical temperature profiles may be obtained using the GPS limb sounding technique from approximately 40 km to about 5–7 km in altitude where moisture effects are negligible. Temperatures in this region usually agree within 2°C with the independent sources of data. The GPS/MET temperature profiles show vertical resolution of about 1 km and resolve the location and minimum temperature of the tropopause very well. Theoretical temperature accuracy is better than 0.5°C at the tropopause, degrading to about 1°C at 40-km altitude. Above 40 km and below 5 km, these preliminary temperature retrievals show difficulties. In the upper atmosphere, the errors result from initial temperature and pressure assumptions in this region and initial ionospheric refraction assumptions. In the lower troposphere, the errors appear to be associated with multipath effects caused by large gradients in refractivity primarily due to water vapor distribution.
Robert S. Ware, C. Rocken, Fredrick Solheim, Michael Exner, William Schreiner, Richard A. Anthes, D. Feng, Benjamin M. Herman, M. E. Gorbunov, Sergey Sokolovskiy, Kenneth R. Hardy, Ying-Hwa Kuo, Xiaolei Zou, Kevin E Trenberth, T. K. Meehan, W. G. Melbourne, Steven Businger (1996). GPS Sounding of the Atmosphere from Low Earth Orbit: Preliminary Results. Bulletin of the American Meteorological Society, 77(1), pp. 19-40, DOI: 10.1175/1520-0477(1996)077<0019:gsotaf>2.0.co;2.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
1996
Authors
17
Datasets
0
Total Files
0
Language
English
Journal
Bulletin of the American Meteorological Society
DOI
10.1175/1520-0477(1996)077<0019:gsotaf>2.0.co;2
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access