0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRecent studies indicate that astrocytes can play a much more active role in neuronal circuits than previously believed, by releasing neurotransmitters such as glutamate and ATP. Here we report that local application of glutamate or glutamine synthetase inhibitors induces astrocytic release of glutamate, which activates a slowly decaying transient inward current (SIC) in CA1 pyramidal neurons and a transient inward current in astrocytes in hippocampal slices. The occurrence of SICs was accompanied by an appearance of large vesicles around the puffing pipette. The frequency of SICs was positively correlated with [glutamate]o. EM imaging of anti-glial fibrillary acid protein-labeled astrocytes showed glutamate-induced large astrocytic vesicles. Imaging of FM 1-43 fluorescence using two-photon laser scanning microscopy detected glutamate-induced formation and fusion of large vesicles identified as FM 1-43-negative structures. Fusion of large vesicles, monitored by collapse of vesicles with a high intensity FM 1-43 stain in the vesicular membrane, coincided with SICs. Glutamate induced two types of large vesicles with high and low intravesicular [Ca2+]. The high [Ca2+] vesicle plays a major role in astrocytic release of glutamate. Vesicular fusion was blocked by infusing the Ca2+ chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, or the SNARE blocker, tetanus toxin, suggesting Ca2+- and SNARE-dependent fusion. Infusion of the vesicular glutamate transport inhibitor, Rose Bengal, reduced astrocytic glutamate release, suggesting the involvement of vesicular glutamate transports in vesicular transport of glutamate. Our results demonstrate that local [glutamate]o increases induce formation and exocytotic fusion of glutamate-containing large astrocytic vesicles. These large vesicles could play important roles in the feedback control of neuronal circuits and epileptic seizures.
Jun Xu, Hong Peng, Ning Kang, Zhuo Zhao, Jane H.-C. Lin, Patric K. Stanton, Jian Jian Kang (2007). Glutamate-induced Exocytosis of Glutamate from Astrocytes. , 282(33), DOI: https://doi.org/10.1074/jbc.m700452200.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2007
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1074/jbc.m700452200
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access