RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Global pattern of organic carbon pools in forest soils

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Global pattern of organic carbon pools in forest soils

0 Datasets

0 Files

English
2024
Global Change Biology
Vol 30 (6)
DOI: 10.1111/gcb.17386

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Yuxue Zhang
Xiaowei Guo
Longxue Chen
+6 more

Abstract

Understanding the mechanisms of soil organic carbon (SOC) sequestration in forests is vital to ecosystem carbon budgeting and helps gain insight in the functioning and sustainable management of world forests. An explicit knowledge of the mechanisms driving global SOC sequestration in forests is still lacking because of the complex interplays between climate, soil, and forest type in influencing SOC pool size and stability. Based on a synthesis of 1179 observations from 292 studies across global forests, we quantified the relative importance of climate, soil property, and forest type on total SOC content and the specific contents of physical (particulate vs. mineral-associated SOC) and chemical (labile vs. recalcitrant SOC) pools in upper 10 cm mineral soils, as well as SOC stock in the O horizons. The variability in the total SOC content of the mineral soils was better explained by climate (47%-60%) and soil factors (26%-50%) than by NPP (10%-20%). The total SOC content and contents of particulate (POC) and recalcitrant SOC (ROC) of the mineral soils all decreased with increasing mean annual temperature because SOC decomposition overrides the C replenishment under warmer climate. The content of mineral-associated organic carbon (MAOC) was influenced by temperature, which directly affected microbial activity. Additionally, the presence of clay and iron oxides physically protected SOC by forming MAOC. The SOC stock in the O horizons was larger in the temperate zone and Mediterranean regions than in the boreal and sub/tropical zones. Mixed forests had 64% larger SOC pools than either broadleaf or coniferous forests, because of (i) higher productivity and (ii) litter input from different tree species resulting in diversification of molecular composition of SOC and microbial community. While climate, soil, and forest type jointly determine the formation and stability of SOC, climate predominantly controls the global patterns of SOC pools in forest ecosystems.

How to cite this publication

Yuxue Zhang, Xiaowei Guo, Longxue Chen, Yakov Kuzyakov, Ruzhen Wang, Haiyang Zhang, Xingguo Han, Yong Xiang Jiang, Osbert Jianxin Sun (2024). Global pattern of organic carbon pools in forest soils. Global Change Biology, 30(6), DOI: 10.1111/gcb.17386.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

9

Datasets

0

Total Files

0

Language

English

Journal

Global Change Biology

DOI

10.1111/gcb.17386

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access