0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Flexoelectricity features the strain gradient‐induced mechanoelectric conversion using materials not limited by their crystalline symmetry, but state‐of‐the‐art flexoelectric materials exhibit very small flexoelectric coefficients and are too brittle to withstand large deformations. Here, inspired by the ion polarization in living organisms, this paper reports the giant iontronic flexoelectricity of soft hydrogels where the ion polarization is attributed to the different transfer rates of cations and anions under bending deformations. The flexoelectricity is found to be easily regulated by the types of anion–cation pairs and polymer networks in the hydrogel. A polyacrylamide hydrogel with 1 m NaCl achieves a record‐high flexoelectric coefficient of ≈1160 µC m −1 , which can even be improved to ≈2340 µC m −1 by synergizing with the effects of ion pairs and extra polycation chains. Furthermore, the hydrogel as flexoelectric materials can withstand larger bending deformations to obtain higher polarization charges owing to its intrinsic low modulus and high elasticity. A soft flexoelectric sensor is then demonstrated for object recognition by robotic hands. The findings greatly broaden the flexoelectricity to soft, biomimetic, and biocompatible materials and applications.
Luyao Jia, Longwei Li, Zi Hao Guo, Hao Sun, Haiming Huang, Fuchun Sun, Zhong Lin Wang, Xiong Pu (2024). Giant Iontronic Flexoelectricity in Soft Hydrogels Induced by Tunable Biomimetic Ion Polarization. , 36(31), DOI: https://doi.org/10.1002/adma.202403830.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adma.202403830
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access