0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe osmolyte glycine betaine (GB) ranks among the few widespread biomolecules in all three domains of life. In corals, tissue concentrations of GB are substantially higher than in the ambient seawater. However, the synthetic routes remain unresolved, questioning whether intracellular GB originates from de novo synthesis or heterotrophic input. Here we show that the genomic blueprint of coral metaorganisms encode the biosynthetic and degradation machinery for GB. Member organisms also adopted the prokaryotic high-affinity carrier-mediated uptake of exogenous GB, rendering coral reefs potential sinks of marine dissolved GB. The machinery metabolizing GB is highly expressed in the coral model Aiptasia and its microalgal symbionts, signifying GB's role in the cnidarian-dinoflagellate symbiosis. We estimate that corals store between 106–109 grams of GB globally, representing about 16% of their nitrogen biomass. Our findings provide a framework for further mechanistic studies addressing GB's role in coral biology and reef ecosystem nitrogen cycling.
David Kamanda Ngugi, Maren Ziegler, Carlos M. Duarte, Christian R. Voolstra (2020). Genomic Blueprint of Glycine Betaine Metabolism in Coral Metaorganisms and Their Contribution to Reef Nitrogen Budgets. , 23(5), DOI: https://doi.org/10.1016/j.isci.2020.101120.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.isci.2020.101120
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access