0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBackground: Understanding the effects of straw return and nitrogen (N) fertilization on soil organic matter (SOM) transformations will help to mitigate climate change and maintain crop production and soil function. A 100-day soil incubation experiment was conducted using a two-factorial design with three fertilization levels and four 13 C-labeled maize straw and N addition treatments. The competition and contributions of the bacterial and fungal communities were assessed with relation to straw mineralization. Results: Mineral fertilizer alone and with straw increased straw decomposition by 59% and 55% and SOM mineralization by 27% and 37%, respectively, compared with the unfertilized soil, due to raised β-N-acetylglucosaminidase and cellobiohyrolase activities. Conversely, priming effect was decreased by 59% and 39%, respectively. Priming effect increased with higher N additions and decreased with lower N additions because an improved C:N ratio for microorganisms. Straw additions increased bacterial and fungal abundance by 1.4 and 4.9 times. Fungal diversity decreased with N fertilization because lower C:N ratios increased the bacterial competition. Bacterial abundance decreased but diversity increased with the duration of incubation as bacteria preferred to utilize labile organic compounds abundant in the initial stages. Along with labile organic compounds depletion, fungal abundance was increased. Firmicutes, Actinobacteria, and Proteobacteria bacterial as well as Ascomycota, Basidiomycota, and Mucoromycota fungi dominated straw and SOM decomposition. Firmicutes were mostly involved in straw and SOM mineralization on day one because of their capacity for labile compound decomposition. Integrated co-occurrence networks revealed that fungal taxa had a stronger correlation with straw decomposition than bacterial groups. Straw and N addition increased the number of negative edges among bacterial taxa but these decreased within fungal groups when compared to trials without straw and N. The ratio for pairwise correlations between abundant fungal taxa, straw, and SOM mineralization (29.9%) was greater than with bacteria (1.2%). Conclusions: Straw with low N additions increased soil C sequestration by decreasing priming effect. Straw alone and with N addition decreased competition for C and N among fungal groups, but increased competition within bacterial taxa. Fungi outcompete bacteria for straw and soil organic matter mineralization in long-term fertilized soils.
Dan Xiao, Xunyang He, Guihong Wang, Xue-Chi Xu, Yajun Hu, Xiangbi Chen, Wei Zhang, Yirong Su, Kelin Wang, Yakov Kuzyakov (2020). Fungi Outcompete Bacteria for Straw and Soil Organic Matter Mineralization. Research Square (Research Square), DOI: 10.21203/rs.3.rs-113337/v1.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2020
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Research Square (Research Square)
DOI
10.21203/rs.3.rs-113337/v1
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access