0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMost of the cadmium (Cd) accumulated in rice grains is derived from its remobilization in soils during the grain filling period when paddy water is drained. The factors affecting Cd remobilization upon drainage remain poorly understood. Here, we show that the free radical effect produced from the oxidation of ferrous sulfides is an important mechanism affecting the oxidative remobilization of Cd during soil drainage. When soils were flooded, microbial sulfate reduction results in the formation of various metal sulfides including CdS and FeS. Upon soil drainage, the oxidation of FeS produced considerable amounts of hydroxyl free radicals (OH•), which could oxidize CdS directly and thereby promote the oxidative dissolution of CdS and increase Cd mobilization in soils. FeS and CdS could also form a within-sulfide voltaic cell, with FeS protecting the oxidative dissolution of CdS due to the lower electrochemical potential of the former. However, this voltaic effect was short-lived and was surpassed by the free radical effect. The amounts and composition of metal sulfides formed during soil flooding vary with soils, and the oxidative dissolution of CdS is affected by both the free radical and voltaic effects offered by different metal sulfides. These effects are also applicable to the biogeochemistry of other chalcophile trace elements coupled with sulfur and iron redox cycles during the anoxic-oxic transition in many environments.
Hui Huang, Xiaobo Ji, Liang-Yi Cheng, Fang-jie Zhao, Peng Wang (2021). Free Radicals Produced from the Oxidation of Ferrous Sulfides Promote the Remobilization of Cadmium in Paddy Soils During Drainage. Environmental Science & Technology, 55(14), pp. 9845-9853, DOI: 10.1021/acs.est.1c00576.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Environmental Science & Technology
DOI
10.1021/acs.est.1c00576
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access