0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMicrobial adhesion and spreading on surfaces are crucial aspects in environmental and industrial settings being also the early stage of complex surface-attached microbial communities known as biofilms. In this work, Pseudomonas fluorescens-laden droplets on hydrophilic substrates (glass coupons) are allowed to partially evaporate before running wetting measurements, to study the effect of evaporation on their interfacial behavior during spillover or splashing. Forced wetting is investigated by imposing controlled centrifugal forces, using a novel rotatory device (Kerberos). At a defined evaporation time, results for the critical tangential force required for the inception of sliding are presented. Microbe-laden droplets exhibit different wetting/spreading properties as a function of the imposed evaporation times. It is found that evaporation is slowed down in bacterial droplets with respect to nutrient medium ones. After sufficient drying times, bacteria accumulate at droplet edges, affecting the droplet shape and thus depinning during forced wetting tests. Droplet rear part does not pin during the rotation test, while only the front part advances and spreads along the force direction. Quantitative results obtained from the well-known Furmidge's equation reveal that force for sliding inception increases as evaporation time increases. This study can be of support for control of biofilm contamination and removal and possible design of antimicrobial/antibiofouling surfaces.
Federica Recupido, Maria Petala, Sergio Caserta, Daniele Marra, Margaritis Kostoglou, Thodoris D. Karapantsios (2023). Forced Wetting Properties of Bacteria-Laden Droplets Experiencing Initial Evaporation. , 39(25), DOI: https://doi.org/10.1021/acs.langmuir.3c00179.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acs.langmuir.3c00179
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access