0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHepatocellular carcinomas represent the third leading cause of cancer-related deaths worldwide. The vast majority of cases arise in the context of chronic liver injury due to hepatitis B virus or hepatitis C virus infection. To identify genetic mechanisms of hepatocarcinogenesis, we characterized copy number alterations and gene expression profiles from the same set of tumors associated with hepatitis C virus. Most tumors harbored 1q gain, 8q gain, or 8p loss, with occasional alterations in 13 additional chromosome arms. In addition to amplifications at 11q13 in 6 of 103 tumors, 4 tumors harbored focal gains at 6p21 incorporating vascular endothelial growth factor A (VEGFA). Fluorescence in situ hybridization on an independent validation set of 210 tumors found 6p21 high-level gains in 14 tumors, as well as 2 tumors with 6p21 amplifications. Strikingly, this locus overlapped with copy gains in 4 of 371 lung adenocarcinomas. Overexpression of VEGFA via 6p21 gain in hepatocellular carcinomas suggested a novel, non–cell-autonomous mechanism of oncogene activation. Hierarchical clustering of gene expression among 91 of these tumors identified five classes, including “CTNNB1”, “proliferation”, “IFN-related”, a novel class defined by polysomy of chromosome 7, and an unannotated class. These class labels were further supported by molecular data; mutations in CTNNB1 were enriched in the “CTNNB1” class, whereas insulin-like growth factor I receptor and RPS6 phosphorylation were enriched in the “proliferation” class. The enrichment of signaling pathway alterations in gene expression classes provides insights on hepatocellular carcinoma pathogenesis. Furthermore, the prevalence of VEGFA high-level gains in multiple tumor types suggests indications for clinical trials of antiangiogenic therapies. [Cancer Res 2008;68(16):6779–88]
Derek Y. Chiang, Augusto Villanueva, Yujin Hoshida, Judit Peix, Philippa Newell, Beatriz Mínguez, Amanda C. LeBlanc, Diana Donovan, Swan N. Thung, Manel Solé, Victoria Tovar, Clara Alsinet, Alex H. Ramos, Jordi Barretina, Sasan Roayaie, Myron Schwartz, Samuel Waxman, Jordi Bruix, Vincenzo Mazzaferro, Azra H. Ligon, Vesna Najfeld, Scott L. Friedman, William R. Sellers, Matthew Meyerson, Josep M. Llovet (2008). Focal Gains of <i>VEGFA</i> and Molecular Classification of Hepatocellular Carcinoma. Cancer Research, 68(16), pp. 6779-6788, DOI: 10.1158/0008-5472.can-08-0742.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2008
Authors
25
Datasets
0
Total Files
0
Language
English
Journal
Cancer Research
DOI
10.1158/0008-5472.can-08-0742
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access