0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis study proposes a strengthening technique comprising a combination of high-strength steel wire mesh and ultra-high performance concrete (UHPC) to address the challenge of the insufficient bearing capacity of existing structures. The tensile performance of high-strength wire mesh and the crack resistance of UHPC were comprehensively considered in this technique. To evaluate the influence of the steel fiber volume ratio and the high-strength steel mesh strengthening ratio on the axial tensile performance, uniaxial tensile tests were carried out on two sets of dumbbell-shaped specimens. A constitutive model of the wire mesh UHPC that matched the experimental results was established. The finite element analysis of RC beams strengthened with high-strength wire mesh and UHPC was carried out, based on this constitutive model. The experimental results indicated the following: (a) The crack resistance and ultimate strength of the specimen reinforced with the high-strength steel wire mesh were effectively enhanced, with enhancement ratios of 97.8% and 124.8%, respectively. (b) The embedded interactions between the steel wire mesh and UHPC were simulated by considering the material nonlinearity. The finite element modeling of RC beams strengthened with wire mesh UHPC was achieved. (c) Positive correlations were observed between the thickness of the UHPC layer, the steel fiber volume ratio, and the high-strength wire mesh layer with the flexural capacity of the strengthened beams. The cracking and ultimate moments were maximally enhanced by 96.2% and 99.4%, respectively.
Chao Zhu, Chunlin Du, Yanxin Qi, Zhimei Jiang, Zhongya Zhang, Jun Yang, Yinbin Li, Jun Cheng (2025). Flexural Performance of RC Beams Strengthened with High-Strength Steel Wire Mesh and UHPC. , 15(4), DOI: https://doi.org/10.3390/buildings15040589.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/buildings15040589
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access