0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA functional tactile sensing device is essential for next‐generation robotics and human–machine interfaces technologies, since the emulation of touching requires large‐scale pressure sensor arrays with distinguishable spatial‐resolution, high sensitivity, and fast response. Here, a flexible LED array composed of PEDOT:PSS and patterned ZnO NWs with a spatial resolution of 7 μm for mapping of spatial pressure distributions is designed and fabricated. The emission intensity of the LED array sensor matrix is dominated by locally applied strains as indicated by the piezo‐phototronic effect. Therefore, spatial pressure distributions are immediately obtained by parallel‐reading the illumination intensities of the LED arrays based on an electroluminescence working mechanism. A wide range of pressure measurements from 40 to 100 MPa are achieved through controlling the growth conditions of the ZnO nanowire array. These devices may find prospective applications as electronic skins by taking advantage of their high spatial‐resolution, flexibility, and wide pressure mapping range.
Rongrong Bao, Chunfeng Wang, Lin Dong, Ruomeng Yu, Kun Zhao, Zhong Lin Wang, Caofeng Pan (2015). Flexible and Controllable Piezo‐Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p‐Polymer LED Array. , 25(19), DOI: https://doi.org/10.1002/adfm.201500801.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adfm.201500801
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access