0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this review, a self-contained (although brief) introduction to electronic structure calculations for single molecule magnet (SMM) properties is provided in conjunction with several contemporary case studies on diverse mononuclear 3d-transition metal complexes. The adequacy of density functional and wavefunction based theories for the prediction and interpretation of magnetic properties is addressed. Furthermore, the connection between calculations and experimental properties is discussed in some detail, in particular with respect to the derivation of spin-Hamiltonian parameters. In addition, we present an outline of the most important features of the most commonly employed quasi-classical spin relaxation model. The presented case studies include Fe, Co and Ni complexes with orbitally degenerate and non-degenerate ground states. The focus is on establishing magneto-structural correlations on both, a qualitative and quantitative level.
Mihail Atanasov, Daniel Aravena, Elizaveta A. Suturina, Eckhard Bill, Dimitrios Maganas, Frank Neese (2014). First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coordination Chemistry Reviews, 289-290, pp. 177-214, DOI: 10.1016/j.ccr.2014.10.015.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Coordination Chemistry Reviews
DOI
10.1016/j.ccr.2014.10.015
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access