0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe performance of five forecasting models was investigated for predicting nursery mortality using the master table built for 3242 groups of pigs (~13 million animals) and 42 variables, which concerned the pre-weaning phase of production and conditions at placement in growing sites. After training and testing each model's performance through cross-validation, the model with the best overall prediction results was the Support Vector Machine model in terms of Root Mean Squared Error (RMSE = 0.406), Mean Absolute Error (MAE = 0.284), and Coefficient of Determination (R2 = 0.731). Subsequently, the forecasting performance of the SVM model was tested on a new dataset containing 72 new groups, simulating ongoing and near real-time forecasting analysis. Despite a decrease in R2 values on the new dataset (R2 = 0.554), the model demonstrated high accuracy (77.78%) for predicting groups with high (>5%) or low (<5%) nursery mortality. This study demonstrated the capability of forecasting models to predict the nursery mortality of commercial groups of pigs using pre-weaning information and stocking condition variables collected post-placement in nursery sites.
Edison Magalhaes, Danyang Zhang, Chong Wang, Pete Thomas, Cesar A. A. Moura, Derald Holtkamp, Giovani Trevisan, Christopher Rademacher, Gustavo S Silva, Daniel Linhares (2023). Field Implementation of Forecasting Models for Predicting Nursery Mortality in a Midwestern US Swine Production System. , 13(15), DOI: https://doi.org/10.3390/ani13152412.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/ani13152412
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access