RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Field-based assessment of the effect of conventional and biodegradable plastic mulch film on nitrogen partitioning, soil microbial diversity, and maize biomass

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Field-based assessment of the effect of conventional and biodegradable plastic mulch film on nitrogen partitioning, soil microbial diversity, and maize biomass

0 Datasets

0 Files

English
2024
Applied Soil Ecology
Vol 202
DOI: 10.1016/j.apsoil.2024.105595

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Martine Graf
Lucy M. Greenfield
Michaela Reay
+7 more

Abstract

In an agricultural context, the use of conventional low-density polyethylene (LDPE) and biodegradable plastic mulch film has been actively promoted, however, the effects on physical and biochemical soil properties, crop growth dynamics, yield, and nutrient cycling of conventional and biodegradable mulch film use in a temperate climate remain largely undetermined. Here, we conducted a field experiment, exploring the effects of no mulch (control), conventional (LDPE), and biodegradable (PLA/PBAT) plastic mulch film on soil and crop (Zea mays L.) nitrogen (N) partitioning after application of 15N-labelled ammonium-nitrate fertiliser. Further, we also investigated the treatment effects on soil physical and biochemical properties (e.g., microbial diversity, compound-specific microbial 15N incorporation, N dynamics), plant development, as well as monitoring the biotic and abiotic degradation of the plastic mulch films. We found that conventional mulch film increased crop yield by 25 % and 15N uptake by 34 % compared to the control, simultaneously reducing 15N retention by 40 % in the topsoil (0–10 cm), but not affecting microbial N use efficiency and N transformation and incorporation into the protein pool. Biodegradable film application resulted in similar biomass (306 ± 14 g plant−1) to both control (275 ± 14 g plant−1) and conventional mulch (344 ± 20 g plant−1) treatments, but significantly reduced 15N crop uptake by 63 % compared to the conventional mulch film. We ascribe this to the accelerated mechanical breakdown and faster degradation of the biodegradable mulch film during the growing season. These findings suggest that current biodegradable plastic mulch film polymer blends may not be a suitable alternative to conventional mulch film in terms of short-term productivity and N use efficiency in a temperate climate for maize production.

How to cite this publication

Martine Graf, Lucy M. Greenfield, Michaela Reay, Rafael Bargiela, Peter N. Golyshin, Richard P. Evershed, Charlotte Lloyd, Gwion B. Williams, David R. Chadwick, Davey L Jones (2024). Field-based assessment of the effect of conventional and biodegradable plastic mulch film on nitrogen partitioning, soil microbial diversity, and maize biomass. Applied Soil Ecology, 202, pp. 105595-105595, DOI: 10.1016/j.apsoil.2024.105595.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

10

Datasets

0

Total Files

0

Language

English

Journal

Applied Soil Ecology

DOI

10.1016/j.apsoil.2024.105595

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access