0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA relatively unexplored aspect of noble-metal nanomaterials is polymorphism, or their ability to crystallize in different crystal phases. Here, a method is reported for the facile synthesis of Ru@Pd core-shell nanocrystals featuring polymorphism, with the core made of hexagonally close-packed (hcp)-Ru while the Pd shell takes either an hcp or face-centered cubic (fcc) phase. The polymorphism shows a dependence on the shell thickness, with shells thinner than ≈1.4 nm taking the hcp phase whereas the thicker ones revert to fcc. The injection rate provides an experimental knob for controlling the phase, with one-shot and drop-wise injection of the Pd precursor corresponding to fcc-Pd and hcp-Pd shells, respectively. When these nanocrystals are tested as catalysts toward formic acid oxidation, the Ru@Pdhcp nanocrystals outperform Ru@Pdfcc in terms of both specific activity and peak potential. Density functional theory calculations are also performed to elucidate the origin of this performance enhancement.
Annemieke Janssen, Veronica Pawlik, Alexander D. von Rueden, Lang Xu, Chenxiao Wang, Manos Mavrikakis, Younan Xia (2021). Facile Synthesis of Palladium‐Based Nanocrystals with Different Crystal Phases and a Comparison of Their Catalytic Properties. , 33(49), DOI: https://doi.org/10.1002/adma.202103801.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adma.202103801
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access