RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Exploring nitrogen losses from urine patches between upland and lowland grazing systems

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Exploring nitrogen losses from urine patches between upland and lowland grazing systems

0 Datasets

0 Files

English
2020
DOI: 10.5194/egusphere-egu2020-9843

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Danielle Hunt
Davey L Jones
Laura Cardenas
+1 more

Abstract

<p>Urine patches in grassland ecosystems present unique environments where extreme nitrogen (N) loading occurs. This results in N losses into the atmosphere or leaching from soil. N losses vary due to climate conditions, soil conditions, and management practices. However, we do not fully understand how these factors influence N cycling and nitrous oxide (N<sub>2</sub>O) emissions from urine patches. Much of the current literature on urine patch N cycling has focused on typical lowland agricultural systems. Very little work has explored other grazing systems, such as upland farming which is conducted across much of Wales. We have investigated this by using a catena sequence crossing both upland and lowland agricultural grazing systems. The range of soil types allowed us to explore how N<sub>2</sub>O emissions and N losses vary under different conditions. Here we report on both a laboratory incubation and a mesocosm experiment examining these issues. This work should help to fill the knowledge gap around how emissions from urine patches could vary between UK uplands and lowlands. We hope to improve understanding of N losses and provide more realistic, regional, and accurate emission factors for upland farming systems.</p>

How to cite this publication

Danielle Hunt, Davey L Jones, Laura Cardenas, David R. Chadwick (2020). Exploring nitrogen losses from urine patches between upland and lowland grazing systems. , DOI: 10.5194/egusphere-egu2020-9843.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

4

Datasets

0

Total Files

0

Language

English

DOI

10.5194/egusphere-egu2020-9843

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access