0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis letter investigates the outage probability of a variable-gain amplify-and-forward full-duplex relaying network in which not only the relaying link but also the direct link is used to convey information, thus improving the system reliability. We consider a basic three-node relaying system composed of a source, a destination, and a two-antenna relay—one antenna for transmission, one antenna for reception. Also, we consider that the full-duplex relay undergoes some residual self interference, modeled as a fading channel, and that maximal-ratio combining is employed at the destination to merge the signals from the source and relay. We derive an exact integral-form expression for the outage probability and validate this via Monte Carlo simulation. In addition, we propose a highly-accurate closed-form approximation to the outage probability, as well as a simple asymptotic expression at high signal-to-noise ratio. The use of the direct link is shown to overcome the zero diversity order inherent to full-duplex relaying.
Diana Pamela Moya Osorio, Edgar Eduardo Benítez Olivo, Hirley Alves, José Cândido Silveira Santos Filho, Matti Latva-aho (2015). Exploiting the Direct Link in Full-Duplex Amplify-and-Forward Relaying Networks. IEEE Signal Processing Letters, 22(10), pp. 1766-1770, DOI: 10.1109/lsp.2015.2432741.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
IEEE Signal Processing Letters
DOI
10.1109/lsp.2015.2432741
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access