RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Experimental investigations on the thermal performance of a novel ground heat exchanger under the synergistic effects of shape-stabilized phase change material and nanofluid

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Experimental investigations on the thermal performance of a novel ground heat exchanger under the synergistic effects of shape-stabilized phase change material and nanofluid

0 Datasets

0 Files

English
2023
Energy
Vol 284
DOI: 10.1016/j.energy.2023.128635

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Long Shi
Long Shi

University Of Science And Technology Of China

Verified
Qinggong Liu
Tao Yao
Long Shi
+4 more

Abstract

Ground source heat pump (GSHP) is known as the most promising green energy utilization technology in the 21st century. However, the heat transfer efficiency of GSHP systems cannot be significantly improved owing to the limitations of heat transfer fluid and surrounding backfill material, which has become a major obstacle to the widespread application of the system. In this paper, efforts had been made to enhance the heat transfer performance of the ground heat exchanger (GHE) under the joint actions of structure and material. For this purpose, an experimental platform for horizontal spiral-coil GHE was built to study the synergistic effects of using shape-stabilized phase change material (SSPCM) as backfilling and CuO/water nanofluid as the heat transfer fluid on thermal performance of the GHE. The results showed that the heat transfer amount increased by 69.9% and the thermal resistance decreased by 81.77% under the synergistic effects of SSPCM and nanofluid. The ground thermal influence radius with SSPCM backfill was about 80% of that with sand backfill. Nanofluid and SSPCM promote and reinforce each other. The performance improvement effect was more significant under the synergistic effects of SSPCM and nanofluid. The findings of this study can help designer to develop high-efficiency GHE.

How to cite this publication

Qinggong Liu, Tao Yao, Long Shi, Yi Huang, Yuanling Peng, Yong Wang, Jiyuan Tu (2023). Experimental investigations on the thermal performance of a novel ground heat exchanger under the synergistic effects of shape-stabilized phase change material and nanofluid. Energy, 284, pp. 128635-128635, DOI: 10.1016/j.energy.2023.128635.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Energy

DOI

10.1016/j.energy.2023.128635

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access