0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMicrobial mineralization of dissolved organic matter (DOM) plays an important role in regulating C and nutrient cycling. Viruses are the most abundant biological agents on Earth, but their effect on the density and activity of soil microorganisms and, consequently, on mineralization of DOM under different temperatures remains poorly understood. To assess the impact of viruses on DOM mineralization, we added soil phage concentrate (active vs. inactive phage control) to four DOM extracts containing inoculated microbial communities and incubated them at 18 °C and 23 °C for 32 days. Infection with active phages generally decreased DOM mineralization at day one and showed accelerated DOM mineralization later (especially from day 5 to 15) compared to that with the inactivated phages. Overall, phage infection increased the microbially driven CO2 release. Notably, while higher temperature increased the total CO2 release, the cumulative CO2 release induced by phage infection (difference between active phages and inactivated control) was not affected. However, higher temperatures advanced the response time of the phages but shortening its active period. Our findings suggest that bacterial predation by phages can significantly affect soil DOM mineralization. Therefore, higher temperatures may accelerate host-phage interactions and thus, the duration of C recycling.
Shuang Wang, Senxiang Yu, Xiaoyan Zhao, Xiaolei Zhao, Kyle Mason‐Jones, Zhenke Zhu, Marc Redmile‐Gordon, Yong Li, Jianping Chen, Yakov Kuzyakov, Tida Ge (2022). Experimental evidence for the impact of phages on mineralization of soil-derived dissolved organic matter under different temperature regimes. The Science of The Total Environment, 846, pp. 157517-157517, DOI: 10.1016/j.scitotenv.2022.157517.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
The Science of The Total Environment
DOI
10.1016/j.scitotenv.2022.157517
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access