0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Spliceosomal introns are ubiquitous non-coding RNAs typically destined for rapid debranching and degradation. Here, we describe 34 excised Saccharomyces cerevisiae introns that, although rapidly degraded in log-phase growth, accumulate as linear RNAs under either saturated-growth conditions or other stresses that cause prolonged inhibition of TORC1, a key integrator of growth signaling. Introns that become stabilized remain associated with components of the spliceosome and differ from the other spliceosomal introns in having a short distance between their lariat branch point and 3′ splice site, which is necessary and sufficient for their stabilization. Deletion of these unusual introns is disadvantageous in saturated conditions and causes aberrantly high growth rates of yeast chronically challenged with the TORC1 inhibitor rapamycin. Reintroduction of native or engineered stable introns suppresses this aberrant rapamycin response. Thus, excised introns function within the TOR growth-signaling network of S. cerevisiae , and more generally, excised spliceosomal introns can have biological functions.
Jeffrey T. Morgan, Gerald R. Fink, David Bartel (2018). Excised linear introns regulate growth in yeast. , DOI: https://doi.org/10.1101/426049.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2018
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1101/426049
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access