RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Exchange Interactions and Magnetic Properties of a Molecular Mn18‐Ring Complex

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Exchange Interactions and Magnetic Properties of a Molecular Mn18‐Ring Complex

0 Datasets

0 Files

English
2023
Chemistry - A European Journal
Vol 29 (30)
DOI: 10.1002/chem.202203449

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Frank Neese
Frank Neese

Max Planck

Verified
Jascha Bandemehr
Mihail Atanasov
Shashank V. Rao
+4 more

Abstract

[Mn3 O(OAc)7 (HOAc)]6 ⋅ x AcOH (x=6-9) represents a rare example of a compound containing molecular Mn18 -rings. These are formed by Mn3 (μ3 -O) subunits in which the high-spin Mn(III) centers are bridged by three pairs of acetate anions (AcO- ). An AcOH molecule coordinates to one of the Mn atoms leading to [Mn3 (μ3 -O)(μ2 -OAc)6 (AcOH)]-units, designated in short as Mn3 -units, that are interconnected by acetate anions via the other two Mn atoms to form Mn18 -rings. Magnetic measurements show weak ferromagnetic interactions between them that are suppressed in strong magnetic field. Quantum-chemical calculations on Mn3 model complexes using independently DFT and ab-initio multi reference methods (CASSCF/NEVPT2) show a correlation between the orientation of the pseudo-Jahn-Teller axes of pairs of Mn(III) magnetic centers and corresponding exchange coupling energies. Weak coupling between Mn3 -units within the Mn18 -ring allowed to simulate the magnetic susceptibility versus temperature dependence in terms of basically uncoupled magnetic moments of each Mn3 -unit within the ring.

How to cite this publication

Jascha Bandemehr, Mihail Atanasov, Shashank V. Rao, Frank Neese, Clemens Pietzonka, Sergei I. Ivlev, Florian Kraus (2023). Exchange Interactions and Magnetic Properties of a Molecular Mn18‐Ring Complex. Chemistry - A European Journal, 29(30), DOI: 10.1002/chem.202203449.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Chemistry - A European Journal

DOI

10.1002/chem.202203449

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access