0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWastewater-based epidemiology (WBE) has been demonstrably successful as a relatively unbiased tool for monitoring levels of SARS-CoV-2 virus circulating in communities during the COVID-19 pandemic. Accumulated biobanks of wastewater samples allow retrospective exploration of spatial and temporal trends for public health indicators such as chemicals, viruses, antimicrobial resistance genes, and the possible emergence of novel human or zoonotic pathogens. We investigated virus resilience to time, temperature, and freeze-thaw cycles, plus the optimal storage conditions to maintain the stability of genetic material (RNA/DNA) of viral +ssRNA (Envelope - E, Nucleocapsid - N and Spike protein - S genes of SARS-CoV-2), dsRNA (Phi6 phage) and circular dsDNA (crAssphage) in wastewater. Samples consisted of (i) processed and extracted wastewater samples, (ii) processed and extracted distilled water samples, and (iii) raw, unprocessed wastewater samples. Samples were stored at -80 °C, -20 °C, 4 °C, or 20 °C for 10 days, going through up to 10 freeze-thaw cycles (once per day). Sample stability was measured using reverse transcription quantitative PCR, quantitative PCR, automated electrophoresis, and short-read whole genome sequencing. Exploring different areas of the SARS-CoV-2 genome demonstrated that the S gene in processed and extracted samples showed greater sensitivity to freeze-thaw cycles than the E or N genes. Investigating surrogate and normalisation viruses showed that Phi6 remains a stable comparison for SARS-CoV-2 in a laboratory setting and crAssphage was relatively resilient to temperature variation. Recovery of SARS-CoV-2 in raw unprocessed samples was significantly greater when stored at 4 °C, which was supported by the sequencing data for all viruses - both time and freeze-thaw cycles negatively impacted sequencing metrics. Historical extracts stored at -80 °C that were re-quantified 12, 14 and 16 months after original quantification showed no major changes. This study highlights the importance of the fast processing and extraction of wastewater samples, following which viruses are relatively robust to storage at a range of temperatures.
Rachel C. Williams, William Bernard Perry, Kathryn Lambert-Slosarska, Ben Futcher, Cameron Pellett, India Richardson-O'Neill, Steve Paterson, Jasmine M. S. Grimsley, Matthew J. Wade, Andrew J. Weightman, Kata Farkas, Davey L Jones (2024). Examining the stability of viral RNA and DNA in wastewater: Effects of storage time, temperature, and freeze-thaw cycles. Water Research, 259, pp. 121879-121879, DOI: 10.1016/j.watres.2024.121879.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
12
Datasets
0
Total Files
0
Language
English
Journal
Water Research
DOI
10.1016/j.watres.2024.121879
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access