0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMolecular evolution, including nucleotide substitutions, plays an important role in understanding the dynamics and mechanisms of species evolution. Here, we sequenced whole plastid genomes (plastomes) of Quercus fabri, Quercus semecarpifolia, Quercus engleriana, and Quercus phellos and compared them with 14 other Quercus plastomes to explore their evolutionary relationships using 67 shared protein-coding sequences. While many previously identified evolutionary relationships were found, our findings do not support previous research which retrieve Quercus subg. Cerris sect. Ilex as a monophyletic group, with sect. Ilex found to be polyphyletic and composed of three strongly supported lineages inserted between sections Cerris and Cyclobalanposis. Compared with gymnosperms, Quercus plastomes showed higher evolutionary rates (Dn/Ds = 0.3793). Most protein-coding genes experienced relaxed purifying selection, and the high Dn value (0.1927) indicated that gene functions adjusted to environmental changes effectively. Our findings suggest that gene interval regions play an important role in Quercus evolution. We detected greater variation in the intergenic regions (trnH-psbA, trnK_UUU-rps16, trnfM_CAU-rps14, trnS_GCU-trnG_GCC, and atpF-atpH), intron losses (petB and petD), and pseudogene loss and degradation (ycf15). Additionally, the loss of some genes suggested the existence of gene exchanges between plastid and nuclear genomes, which affects the evolutionary rate of the former. However, the connective mechanism between these two genomes is still unclear.
Xuan Li, Yongfu Li, Steven P. Sylvester, Mingyue Zang, Yousry A. El‐Kassaby, Yanming Fang (2021). Evolutionary patterns of nucleotide substitution rates in plastid genomes of <i>Quercus</i>. , 11(19), DOI: https://doi.org/10.1002/ece3.8063.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/ece3.8063
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access