0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn an earlier study, we found that rice (Oryza sativa) grown in nutrient solution well-supplied with Zn preferentially took up light (64)Zn over (66)Zn, probably as a result of kinetic fractionation in membrane transport processes. Here, we measure isotope fractionation by rice in a submerged Zn-deficient soil with and without Zn fertilizer. We grew the same genotype as in the nutrient solution study plus low-Zn tolerant and intolerant lines from a recombinant inbred population. In contrast to the nutrient solution, in soil with Zn fertilizer we found little or heavy isotopic enrichment in the plants relative to plant-available Zn in the soil, and in soil without Zn fertilizer we found consistently heavy enrichment, particularly in the low-Zn tolerant line. These observations are only explicable by complexation of Zn by a complexing agent released from the roots and uptake of the complexed Zn by specific root transporters. We show with a mathematical model that, for realistic rates of secretion of the phytosiderophore deoxymugineic acid (DMA) by rice, and realistic parameters for the Zn-solubilizing effect of DMA in soil, solubilization and uptake by this mechanism is necessary and sufficient to account for the measured Zn uptake and the differences between genotypes.
Tim Arnold, G. J. D. Kirk, Matthias Wissuwa, Michael Frei, Fang-jie Zhao, Thomas F.D. Mason, Dominik J. Weiß (2009). Evidence for the mechanisms of zinc uptake by rice using isotope fractionation. Plant Cell & Environment, 33(3), pp. 370-381, DOI: 10.1111/j.1365-3040.2009.02085.x.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2009
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Plant Cell & Environment
DOI
10.1111/j.1365-3040.2009.02085.x
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access