0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe majority of deaths from malaria are in young African children. Parenteral artesunate (ARS) is the first-line treatment for severe falciparum malaria. Since 2015, the World Health Organization has recommended individual doses of 3 mg/kg for children weighing < 20 kg. Recently, the US Food and Drug Administration (FDA) has challenged this recommendation, based on a simulated pediatric population, and argued for a lower dose in younger children (2.4 mg/kg). In this study, we performed population pharmacokinetic (PK) modeling of plasma concentration data from 80 children with severe falciparum malaria in the Democratic Republic of Congo who were given 2.4 mg/kg of ARS intravenously. Bayesian hierarchical modeling and a two-compartment parent drug-metabolite PK model for ARS were used to describe the population PKs of ARS and its main biologically active metabolite dihydroartemisinin. We then generated a virtual population representative of the target population in which the drug is used and simulated the total first-dose exposures. Our study shows that the majority of younger children given the lower 2.4 mg/kg dose of intravenous ARS do not reach the same drug exposures as older children above 20 kg. This finding supports withdrawal of the FDA's recent lower ARS dose recommendation as parenteral ARS is an extremely safe and well-tolerated drug and there is potential for harm from underdosing in this rapidly lethal infection.
Ali Haghiri, David J. Price, Phoebe Fitzpatrick, S Dini, Megha Rajasekhar, Caterina Fanello, Joel Tärning, James A Watson, Sir Nicholas White, J. A. Simpson (2023). Evidence Based Optimal Dosing of Intravenous Artesunate in Children with Severe Falciparum Malaria. Clinical Pharmacology & Therapeutics, 114(6), pp. 1304-1312, DOI: 10.1002/cpt.3041.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Clinical Pharmacology & Therapeutics
DOI
10.1002/cpt.3041
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access