0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessProcess-based models are useful tools to integrate the effects of detailed agricultural practices, soil characteristics, mass balance, and climate change on soil N2O emissions from soil - plant ecosystems, whereas static, seasonal or annual models often exist to estimate cumulative N2O emissions under data-limited conditions. A study was carried out to compare the capability of four models to estimate seasonal cumulative N2O fluxes from 419 field measurements representing 65 studies across China's croplands. The models were 1) the DAYCENT model, 2) the DNDC model, 3) the linear regression model (YLRM) of Yue et al. (2018), and 4) IPCC Tier 1 emission factors. The DAYCENT and DNDC models estimated crop yields with R2 values of 0.60 and 0.66 respectively, but both models showed significant underestimation for all measurements. The estimated seasonal N2O emissions with R2 of 0.31, 0.30, 0.21 and 0.17 for DAYCENT, DNDC, YLRM, and IPCC, respectively. Based on RMSE, modelling efficiency and bias analysis, YLRM performed well on N2O emission prediction under no fertilization though bias still existed, while IPCC performed well for cotton and rapeseed and DNDC for soybean. The DAYCENT model accurately predicted the emissions with no bias across other crop and fertilization types whereas the DNDC model underestimated seasonal N2O emissions by 0.42 kg N2O-N ha−1 for all observed values. Model evaluation indicated that the DAYCENT and DNDC models simulated temporal patterns of daily N2O emissions effectively, but both models had difficulty in simulating the timing of the N2O fluxes following some events such as fertilization and water regime. According to this evaluation, algorithms for crop production and N2O emission should be improved to increase the accuracy in the prediction of unfertilized fields both for DAYCENT and DNDC. The effects of crop types and management modes such as fertilizations should also be further refined for YLRM.
Yue Qian, Kun Cheng, Stephen M. Ogle, Jonathan Hillier, Pete Smith, Mohamed Abdalla, Alicia Ledo, Jianfei Sun, Genxing Pan (2018). Evaluation of four modelling approaches to estimate nitrous oxide emissions in China's cropland. The Science of The Total Environment, 652, pp. 1279-1289, DOI: 10.1016/j.scitotenv.2018.10.336.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
The Science of The Total Environment
DOI
10.1016/j.scitotenv.2018.10.336
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access