0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNew estimates of the poleward energy transport based on atmospheric reanalyses from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) and the European Centre for Medium-Range Weather Forecasts are presented. The analysis focuses on the period from February 1985 to April 1989 when there are reliable top-of-the-atmosphere radiation data from the Earth Radiation Budget Experiment. Annual mean poleward transports of atmospheric energy peak at 5.0 ± 0.14 PW at 43°N and with similar values near 40°S, which is much larger than previous estimates. The standard deviation of annual and zonal mean variability from 1979 to 1998 is mostly less than 0.15 PW (1%–3%). Results are evaluated by computing the implied ocean heat transports, utilizing physical constraints, and comparing them with direct oceanographic estimates and those from successful stable coupled climate models that have been run without artificial flux adjustments for several centuries. Reasonable agreement among ocean transports is obtained with the disparate methods when the results from NCEP–NCAR reanalyses based upon residually derived (not model-generated) methods are used, and this suggests that improvements have occurred and convergence is to the true values. Atmospheric transports adjusted for spurious subterranean transports over land areas are inferred and show that poleward ocean heat transports are dominant only between 0° and 17°N. At 35° latitude, at which the peak total poleward transport in each hemisphere occurs, the atmospheric transport accounts for 78% of the total in the Northern Hemisphere and 92% in the Southern Hemisphere. In general, a much greater portion of the required poleward transport is contributed by the atmosphere than the ocean, as compared with previous estimates.
Kevin E Trenberth, Julie M. Caron (2001). Estimates of Meridional Atmosphere and Ocean Heat Transports. Journal of Climate, 14(16), pp. 3433-3443, DOI: 10.1175/1520-0442(2001)014<3433:eomaao>2.0.co;2.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2001
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
Journal of Climate
DOI
10.1175/1520-0442(2001)014<3433:eomaao>2.0.co;2
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access