0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMultiple-input multiple-output has been a key technology for wireless systems for decades. For typical MIMO communication systems, antenna array elements are usually separated by half of the carrier wavelength, thus termed as conventional MIMO. In this paper, we investigate the performance of multi-user MIMO communication, with sparse arrays at both the transmitter and receiver side, i.e., the array elements are separated by more than half wavelength. Given the same number of array elements, the performance of sparse MIMO is compared with conventional MIMO. On one hand, sparse MIMO has a larger aperture, which can achieve narrower main lobe beams that make it easier to resolve densely located users. Besides, increased array aperture also enlarges the near-field communication region, which can enhance the spatial multiplexing gain, thanks to the spherical wavefront property in the near-field region. On the other hand, element spacing larger than half wavelength leads to undesired grating lobes, which, if left unattended, may cause severe inter-user interference. To gain further insights, we first study the spatial multiplexing gain of the basic single-user sparse MIMO communication system, where a closed-form expression of the near-field effective degree of freedom is derived. The result shows that the EDoF increases with the array sparsity for sparse MIMO before reaching its upper bound, which equals to the minimum value between the transmit and receive antenna numbers. Furthermore, the scaling law for the achievable data rate with varying array sparsity is analyzed and an array sparsity-selection strategy is proposed. We then consider the more general multi-user sparse MIMO communication system. It is shown that sparse MIMO is less likely to experience severe IUI than conventional MIMO.
Huizhi Wang, Chao Feng, Yong Zeng, Jin Shi, Chau Yuen, Bruno Clerckx, Rui Zhang (2024). Enhancing Spatial Multiplexing and Interference Suppression for Near- and Far-Field Communications with Sparse MIMO. arXiv (Cornell University), DOI: 10.48550/arxiv.2408.01956.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2024
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
arXiv (Cornell University)
DOI
10.48550/arxiv.2408.01956
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access