RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Enhancing energy storage capability for renewable energy systems through advanced cement-based supercapacitors

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2025

Enhancing energy storage capability for renewable energy systems through advanced cement-based supercapacitors

0 Datasets

0 Files

English
2025
Energy and Buildings
DOI: 10.1016/j.enbuild.2025.115732

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Long Shi
Long Shi

University Of Science And Technology Of China

Verified
Changying Zhao
Wenkui Dong
T.M.I. Mahlia
+4 more

Abstract

As global warming worsens, countries around the world have developed policies to reduce carbon emissions and accelerate the transition to renewable energy. Recently, cement-based supercapacitors have attracted significant attention due to their low energy consumption and multifunctionality, offering a promising solution for large-scale energy storage in renewable energy systems. This review provides an overview of the advancements, mechanism and characterization of cement-based supercapacitors, followed by an analysis of performance studies on mechanical and electrochemical properties based on cement types, water to cement (W/C) ratio, curing age, additives, and various electrodes of contemporary interest. The progress in overcoming issues related to the energy storage capacity and mechanical properties of polymer modified cement-based electrolytes is analyzed. In addition, high-performance and long-lifespan electrodes modified by nanomaterials and metal oxides are essential for establishing highly efficient cement-based supercapacitors. The multifunctionality of these materials is further discussed, emphasizing mitigating intrinsic contradictions is key to large-scale production and commercialization. Finally, perspectives are provided on the future development requirements of advanced cement-based supercapacitors, focusing on sustainability, economic promotion, social impact, and industrial stability. This review not only provides direction for researchers in renewable energy storage but also offers valuable insights for achieving energy savings and carbon neutrality.

How to cite this publication

Changying Zhao, Wenkui Dong, T.M.I. Mahlia, Long Shi, Kejin Wang, Surendra P. Shah, Wengui Li (2025). Enhancing energy storage capability for renewable energy systems through advanced cement-based supercapacitors. Energy and Buildings, pp. 115732-115732, DOI: 10.1016/j.enbuild.2025.115732.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Energy and Buildings

DOI

10.1016/j.enbuild.2025.115732

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access