RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Enhanced photoresponsivity of the MoS2-GaN heterojunction diode via the piezo-phototronic effect

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2017

Enhanced photoresponsivity of the MoS2-GaN heterojunction diode via the piezo-phototronic effect

0 Datasets

0 Files

en
2017
Vol 9 (8)
Vol. 9
DOI: 10.1038/am.2017.142

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Fei Xue
Leijing Yang
Mengxiao Chen
+6 more

Abstract

Combining layered MoS2 flakes with conventional 3D semiconductors is a feasible route to fabricate high-quality heterojunction devices by harnessing the advantages of both materials. Here, we present a pressure-modulated heterojunction photodiode that is composed of an n-type multilayer MoS2 and a p-type GaN film via the piezo-phototronic effect. Under the illumination of 365 nm incident light, a strong photoresponse is observed with response and recovery times of ~66 and 74 ms, respectively. Under a pressure of 258 MPa, the photoresponsivity of this photodiode can be tuned by the piezo-phototronic effect arising from the GaN film to ~3.5 times. Because of the lowered junction barrier with an applied external pressure (strain), more photogenerated carriers can successfully pass through the junction area without recombination, which results in an enhancement effect. This work provides a possible path for the implementation of high-performance electronic and optoelectronic devices that are based on hybrid heterostructures via human interfacing. A device that combines the advantages of both conventional and modern atom-thick semiconductors has been created. Two-dimensional materials have a wide range of exotic electronic properties that could lead to new generation of electronic devices. However, achieving the broadest diversity of functionality will probably necessitate combing these flat materials with conventional semiconductors. Zhong Lin Wang from the Beijing Institute of Nanoenergy and Nanosystems and colleagues created a photodetector whose response can be tuned by applying pressure. They stacked two-dimensional molybdenum disulfide onto a thin film of gallium nitride to create a diode that generates an electrical signal on exposure to light with a wavelength of 365 nanometers. The team showed that the photoresponsivity could be boosted by a factor of 3.5 when an external pressure was applied. Here, we present a pressure-modulated heterojunction photodiode composed of n-type multilayer MoS2 and p-type GaN film by piezo-phototronic effect. Under the illumination of 365 nm incident light, strong photo-response is observed with a response time and recovery time of ~66 and 74 ms, respectively. Upon the pressure of 258 MPa, the photoresponsivity of this photodiode can be enhanced for about 3.5 times by piezo-phototronic effect arising from the GaN film. Due to the lowered junction barrier upon applying an external pressure (strain), more photo-generated carriers can successfully pass through the junction area without recombination, resulting in the enhancement effect.

How to cite this publication

Fei Xue, Leijing Yang, Mengxiao Chen, Jian Chen, Xiaonian Yang, Longfei Wang, Libo Chen, Caofeng Pan, Zhong Lin Wang (2017). Enhanced photoresponsivity of the MoS2-GaN heterojunction diode via the piezo-phototronic effect. , 9(8), DOI: https://doi.org/10.1038/am.2017.142.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

9

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1038/am.2017.142

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access