0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTo address the growing demand for fresh water with a smaller carbon footprint, photothermal membrane distillation (PMD) has been proposed by combining membrane distillation with solar irradiation. Due to its low level of energy consumption and portability, PMD is becoming increasingly attractive for water production in off-grid areas. However, it still suffers from several challenges, including membrane scaling. To address this issue, we developed photothermal membranes with different wettabilities. #PCNT-2 with a hydrophobic surface was obtained by electrospinning a polyvinylidene fluoride (PVDF) nanofibrous substrate and a hydrophobic PVDF/carbon nanotube (CNT) surface layer. The surface was then modified by depositing a polydopamine (PDA) layer to make it hydrophilic (#PCNT-D). It was found that #PCNT-D exhibited the highest surface temperature under both dry and wet conditions and the highest evaporation rate due to its broad light absorption and high photothermal efficiency. PMD tests show that #PCNT-D with a hydrophilic surface possessed the best antiscaling performance under illumination. This can be attributed to it having the highest surface temperature and lowest mass transfer resistance, the highest salt solubility on a membrane surface, and the best heat transfer efficiency between the heated membrane surface and absorbed water in the PDA layer.
Yuqi Wang, Xiangjun Liao, Xiaocheng Zhang, Minghao Shi, Xiaofei You, Yuan Liao, A Ghani Razaqpur (2022). Engineering Surface Wettability to Alleviate Membrane Scaling in Photothermal Membrane Distillation. ACS ES&T Water, 3(7), pp. 1847-1854, DOI: 10.1021/acsestwater.2c00339.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
ACS ES&T Water
DOI
10.1021/acsestwater.2c00339
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access