0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract As a class of biocompatible and biodegradable phase‐change materials, natural fatty acids have received considerable interest in recent years for temperature‐controlled release of drugs. However, the poor dispersibility and colloidal stability of their nanoparticles under physiological conditions place a major limitation on their applications in biomedicine. Herein, we report a facile method for encapsulating a mixture of two natural fatty acids (with a eutectic melting point at 39 °C) in a biocompatible, silica‐based nanocapsule to achieve both stable dispersion and controllable release of drugs. The nanocapsules have a well‐defined hole in the wall to ensure easy loading of fatty acids, together with multiple types of functional components such as therapeutics and near‐infrared dyes. The payloads can be released through the hole when the fatty acids are melted upon photothermal heating. The release profile can be controlled by varying the size of the hole and/or the duration of laser irradiation.
Jichuan Qiu, Da Huo, Jiajia Xue, Guanghui Zhu, Hong Liu, Younan Xia (2019). Encapsulation of a Phase‐Change Material in Nanocapsules with a Well‐Defined Hole in the Wall for the Controlled Release of Drugs. , 131(31), DOI: https://doi.org/10.1002/ange.201904549.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/ange.201904549
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access