0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Unconstrained measurement of physiological signals including electrocardiograph, respiration, and temperature by sensors through incorporation into commonly used objects has sparked a notable revolution in healthcare monitoring. However, unconstrained precision epidermal pulse wave monitoring is rarely reported. Although the current flexible skin‐mounted sensors can capture pulse waves, they lack the capability to perceive tiny pulse pressure in an unconstrained manner. Herein, utilizing thin‐film materials and multilevel microstructure design, an ultrathin and flexible sensor (UFS) with the features of high flexibility, shape‐adaptability, and ultra‐broad‐range high pressure sensitivity is proposed for unconstrained precision pulse wave sensing. Given these compelling features, the UFS is mounted to the surfaces of commonly used objects and successfully detects the fingertip pulse wave even under an ultra‐broad‐range finger‐touching force. Key cardiovascular parameters are also extracted from the acquired fingertip pulse wave accurately. Furthermore, a proof‐of‐concept healthcare system, by combining the UFS and flexible devices (for example, flexible phones or E‐newspapers) is demonstrated, offering a great advancement in developing an all‐in‐one system for IoT‐based bio‐health monitoring at all times and places.
Xue Wang, Jun Yang, Keyu Meng, Qiang He, Gaoqiang Zhang, Zhihao Zhou, Xulong Tan, Zhiping Feng, Chenchen Sun, Jin Yang, Zhong Lin Wang (2021). Enabling the Unconstrained Epidermal Pulse Wave Monitoring via Finger‐Touching. , 31(32), DOI: https://doi.org/10.1002/adfm.202102378.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
11
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adfm.202102378
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access