0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe availability of accessible fabrication methods based on deterministic transfer of atomically thin crystals has been essential for the rapid expansion of research into van der Waals heterostructures. An inherent issue of these techniques is the deformation of the polymer carrier film during the transfer, which can lead to highly nonuniform strain induced in the transferred two-dimensional material. Here, using a combination of optical spectroscopy, atomic force, and Kelvin probe force microscopy, we show that the presence of nanometer scale wrinkles formed due to transfer-induced stress relaxation can lead to strong changes in the optical properties of MoSe2/WSe2 heterostructures and the emergence of linearly polarized interlayer exciton photoluminescence. We attribute these changes to local breaking of crystal symmetry in the nanowrinkles, which act as efficient accumulation centers for interlayer excitons due to the strain-induced interlayer band gap reduction. Surface potential images of the rippled heterobilayer samples acquired using Kelvin probe force microscopy reveal variations of the local work function consistent with strain-induced band gap modulation, while the potential offset observed at the ridges of the wrinkles shows a clear correlation with the value of the tensile strain estimated from the wrinkle geometry. Our findings highlight the important role of the residual strain in defining optical properties of van der Waals heterostructures and suggest effective approaches for interlayer exciton manipulation by local strain engineering.
Evgeny M. Alexeev, Nic Mullin, Pablo Ares, H. Nevison-Andrews, Oleksandr Skrypka, Tillmann Godde, Aleksey Kozikov, Lee Hague, Yibo Wang, Konstantin ‘kostya’ Novoselov, Laura Fumagalli, Jamie K. Hobbs, A. I. Tartakovskii (2020). Emergence of Highly Linearly Polarized Interlayer Exciton Emission in MoSe<sub>2</sub>/WSe<sub>2</sub> Heterobilayers with Transfer-Induced Layer Corrugation. ACS Nano, 14(9), pp. 11110-11119, DOI: 10.1021/acsnano.0c01146.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
13
Datasets
0
Total Files
0
Language
English
Journal
ACS Nano
DOI
10.1021/acsnano.0c01146
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access