0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Objective . In the theoretical framework of predictive coding and active inference, the brain can be viewed as instantiating a rich generative model of the world that predicts incoming sensory data while continuously updating its parameters via minimization of prediction errors. While this theory has been successfully applied to cognitive processes—by modelling the activity of functional neural networks at a mesoscopic scale—the validity of the approach when modelling neurons as an ensemble of inferring agents, in a biologically plausible architecture, remained to be explored. Approach. We modelled a simplified cerebellar circuit with individual neurons acting as Bayesian agents to simulate the classical delayed eyeblink conditioning protocol. Neurons and synapses adjusted their activity to minimize their prediction error, which was used as the network cost function. This cerebellar network was then implemented in hardware by replicating digital neuronal elements via a low-power microcontroller. Main results . Persistent changes of synaptic strength—that mirrored neurophysiological observations—emerged via local (neurocentric) prediction error minimization, leading to the expression of associative learning. The same paradigm was effectively emulated in low-power hardware showing remarkably efficient performance compared to conventional neuromorphic architectures. Significance . These findings show that: (a) an ensemble of free energy minimizing neurons—organized in a biological plausible architecture—can recapitulate functional self-organization observed in nature, such as associative plasticity, and (b) a neuromorphic network of inference units can learn unsupervised tasks without embedding predefined learning rules in the circuit, thus providing a potential avenue to a novel form of brain-inspired artificial intelligence.
Daniela Gandolfi, Francesco Maria Puglisi, Giulia Maria Boiani, Giuseppe Pagnoni, Karl Friston, Egidio D’Angelo, Jonathan Mapelli (2022). Emergence of associative learning in a neuromorphic inference network. , 19(3), DOI: https://doi.org/10.1088/1741-2552/ac6ca7.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1088/1741-2552/ac6ca7
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access