0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe electronic structure of a family of bis(imino)pyridine iron dihalide, monohalide, and neutral ligand compounds has been investigated by spectroscopic and computational methods. The metrical parameters combined with Mössbauer spectroscopic and magnetic data for (iPrPDI)FeCl2 (iPrPDI = 2,6-(2,6-iPr2C6H3NCMe)2C5H3N) established a high-spin ferrous center ligated by a neutral bis(imino)pyridine ligand. Comparing these data to those for the single electron reduction product, (iPrPDI)FeCl, again demonstrated a high-spin ferrous ion, but in this case the SFe = 2 metal center is antiferromagnetically coupled to a ligand-centered radical (SL = 1/2), accounting for the experimentally observed S = 3/2 ground state. Continued reduction to (iPrPDI)FeLn (L = N2, n = 1,2; CO, n = 2; 4-(N,N-dimethylamino)pyridine, n = 1) resulted in a doubly reduced bis(imino)pyridine diradical, preserving the ferrous ion. Both the computational and the experimental data for the N,N-(dimethylamino)pyridine compound demonstrate nearly isoenergetic singlet (SL = 0) and triplet (SL = 1) forms of the bis(imino)pyridine dianion. In both spin states, the iron is intermediate spin (SFe = 1) ferrous. Experimentally, the compound has a spin singlet ground state (S = 0) due to antiferromagnetic coupling of iron and the ligand triplet state. Mixing of the singlet diradical excited state with the triplet ground state of the ligand via spin−orbit coupling results in temperature-independent paramagnetism and accounts for the large dispersion in 1H NMR chemical shifts observed for the in-plane protons on the chelate. Overall, these studies establish that reduction of (iPrPDI)FeCl2 with alkali metal or borohydride reagents results in sequential electron transfers to the conjugated π-system of the ligand rather than to the metal center.
Suzanne C. Bart, K. Chłopek, Eckhard Bill, M.W. Bouwkamp, Emil B. Lobkovsky, Frank Neese, Karl Wieghardt, Paul J. Chirik (2006). Electronic Structure of Bis(imino)pyridine Iron Dichloride, Monochloride, and Neutral Ligand Complexes: A Combined Structural, Spectroscopic, and Computational Study. Journal of the American Chemical Society, 128(42), pp. 13901-13912, DOI: 10.1021/ja064557b.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2006
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
Journal of the American Chemical Society
DOI
10.1021/ja064557b
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access